EconPapers    
Economics at your fingertips  
 

Stable representation of sounds in the posterior striatum during flexible auditory decisions

Lan Guo, William I. Walker, Nicholas D. Ponvert, Phoebe L. Penix and Santiago Jaramillo ()
Additional contact information
Lan Guo: University of Oregon
William I. Walker: University of Oregon
Nicholas D. Ponvert: University of Oregon
Phoebe L. Penix: University of Oregon
Santiago Jaramillo: University of Oregon

Nature Communications, 2018, vol. 9, issue 1, 1-10

Abstract: Abstract The neuronal pathways that link sounds to rewarded actions remain elusive. For instance, it is unclear whether neurons in the posterior tail of the dorsal striatum (which receive direct input from the auditory system) mediate action selection, as other striatal circuits do. Here, we examine the role of posterior striatal neurons in auditory decisions in mice. We find that, in contrast to the anterior dorsal striatum, activation of the posterior striatum does not elicit systematic movement. However, activation of posterior striatal neurons during sound presentation in an auditory discrimination task biases the animals’ choices, and transient inactivation of these neurons largely impairs sound discrimination. Moreover, the activity of these neurons during sound presentation reliably encodes stimulus features, but is only minimally influenced by the animals’ choices. Our results suggest that posterior striatal neurons play an essential role in auditory decisions, and provides a stable representation of sounds during auditory tasks.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-018-03994-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03994-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-03994-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03994-3