Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria
Cameron M. Callbeck,
Gaute Lavik,
Timothy G. Ferdelman (),
Bernhard Fuchs,
Harald R. Gruber-Vodicka,
Philipp F. Hach,
Sten Littmann,
Niels J. Schoffelen,
Tim Kalvelage,
Sören Thomsen,
Harald Schunck,
Carolin R. Löscher,
Ruth A. Schmitz and
Marcel M. M. Kuypers
Additional contact information
Cameron M. Callbeck: Max Planck Institute for Marine Microbiology
Gaute Lavik: Max Planck Institute for Marine Microbiology
Timothy G. Ferdelman: Max Planck Institute for Marine Microbiology
Bernhard Fuchs: Max Planck Institute for Marine Microbiology
Harald R. Gruber-Vodicka: Max Planck Institute for Marine Microbiology
Philipp F. Hach: Max Planck Institute for Marine Microbiology
Sten Littmann: Max Planck Institute for Marine Microbiology
Niels J. Schoffelen: Max Planck Institute for Marine Microbiology
Tim Kalvelage: Max Planck Institute for Marine Microbiology
Sören Thomsen: GEOMAR Helmholtz Centre for Ocean Research
Harald Schunck: University of Kiel
Carolin R. Löscher: University of Kiel
Ruth A. Schmitz: University of Kiel
Marcel M. M. Kuypers: Max Planck Institute for Marine Microbiology
Nature Communications, 2018, vol. 9, issue 1, 1-11
Abstract:
Abstract Members of the gammaproteobacterial clade SUP05 couple water column sulfide oxidation to nitrate reduction in sulfidic oxygen minimum zones (OMZs). Their abundance in offshore OMZ waters devoid of detectable sulfide has led to the suggestion that local sulfate reduction fuels SUP05-mediated sulfide oxidation in a so-called “cryptic sulfur cycle”. We examined the distribution and metabolic capacity of SUP05 in Peru Upwelling waters, using a combination of oceanographic, molecular, biogeochemical and single-cell techniques. A single SUP05 species, U Thioglobus perditus, was found to be abundant and active in both sulfidic shelf and sulfide-free offshore OMZ waters. Our combined data indicated that mesoscale eddy-driven transport led to the dispersal of U T. perditus and elemental sulfur from the sulfidic shelf waters into the offshore OMZ region. This offshore transport of shelf waters provides an alternative explanation for the abundance and activity of sulfide-oxidizing denitrifying bacteria in sulfide-poor offshore OMZ waters.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-018-04041-x Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04041-x
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-018-04041-x
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().