Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background graphene
Carolin Seuring (),
Kartik Ayyer,
Eleftheria Filippaki,
Miriam Barthelmess,
Jean-Nicolas Longchamp,
Philippe Ringler,
Tommaso Pardini,
David H. Wojtas,
Matthew A. Coleman,
Katerina Dörner,
Silje Fuglerud,
Greger Hammarin,
Birgit Habenstein,
Annette E. Langkilde,
Antoine Loquet,
Alke Meents,
Roland Riek,
Henning Stahlberg,
Sébastien Boutet,
Mark S. Hunter,
Jason Koglin,
Mengning Liang,
Helen M. Ginn,
Rick P. Millane,
Matthias Frank,
Anton Barty and
Henry N. Chapman
Additional contact information
Carolin Seuring: Deutsches Elektronen-Synchrotron
Kartik Ayyer: Deutsches Elektronen-Synchrotron
Eleftheria Filippaki: Deutsches Elektronen-Synchrotron
Miriam Barthelmess: Deutsches Elektronen-Synchrotron
Jean-Nicolas Longchamp: Physics Department of the University of Zurich
Philippe Ringler: Biozentrum, University of Basel
Tommaso Pardini: Lawrence Livermore National Laboratory
David H. Wojtas: University of Canterbury
Matthew A. Coleman: Lawrence Livermore National Laboratory
Katerina Dörner: Deutsches Elektronen-Synchrotron
Silje Fuglerud: Deutsches Elektronen-Synchrotron
Greger Hammarin: Department of Chemistry and Molecular Biology
Birgit Habenstein: CNRS, CBMN UMR5248, IECB, Université de Bordeaux
Annette E. Langkilde: University of Copenhagen
Antoine Loquet: CNRS, CBMN UMR5248, IECB, Université de Bordeaux
Alke Meents: Deutsches Elektronen-Synchrotron
Roland Riek: Laboratory of Physical Chemistry, ETH Zürich
Henning Stahlberg: Biozentrum, University of Basel
Sébastien Boutet: SLAC National Accelerator Laboratory
Mark S. Hunter: SLAC National Accelerator Laboratory
Jason Koglin: SLAC National Accelerator Laboratory
Mengning Liang: SLAC National Accelerator Laboratory
Helen M. Ginn: University of Oxford
Rick P. Millane: University of Canterbury
Matthias Frank: Lawrence Livermore National Laboratory
Anton Barty: Deutsches Elektronen-Synchrotron
Henry N. Chapman: Deutsches Elektronen-Synchrotron
Nature Communications, 2018, vol. 9, issue 1, 1-10
Abstract:
Abstract Here we present a new approach to diffraction imaging of amyloid fibrils, combining a free-standing graphene support and single nanofocused X-ray pulses of femtosecond duration from an X-ray free-electron laser. Due to the very low background scattering from the graphene support and mutual alignment of filaments, diffraction from tobacco mosaic virus (TMV) filaments and amyloid protofibrils is obtained to 2.7 Å and 2.4 Å resolution in single diffraction patterns, respectively. Some TMV diffraction patterns exhibit asymmetry that indicates the presence of a limited number of axial rotations in the XFEL focus. Signal-to-noise levels from individual diffraction patterns are enhanced using computational alignment and merging, giving patterns that are superior to those obtainable from synchrotron radiation sources. We anticipate that our approach will be a starting point for further investigations into unsolved structures of filaments and other weakly scattering objects.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-018-04116-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04116-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-018-04116-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().