Polysulfurating reagent design for unsymmetrical polysulfide construction
Xiao Xiao,
Jiahui Xue and
Xuefeng Jiang ()
Additional contact information
Xiao Xiao: East China Normal University
Jiahui Xue: East China Normal University
Xuefeng Jiang: East China Normal University
Nature Communications, 2018, vol. 9, issue 1, 1-9
Abstract:
Abstract From life science to material science, to pharmaceutical industry, and to food chemistry, polysulfides are vital structural scaffolds. However, there are limited synthetic methods for unsymmetrical polysulfides. Conventional strategies entail two pre-sulfurated cross-coupling substrates, R–S, with higher chances of side reactions due to the characteristic of sulfur. Herein, a library of broad-spectrum polysulfurating reagents, R–S–S–OMe, are designed and scalably synthesized, to which the R–S–S source can be directly introduced for late-stage modifications of biomolecules, natural products, and pharmaceuticals. Based on the hard and soft acids and bases principle, selective activation of sulfur-oxygen bond has been accomplished via utilizing proton and boride for efficient unsymmetrical polysulfuration. These polysulfurating reagents are highlighted with their outstanding multifunctional gram-scale transformations with various nucleophiles under mild conditions. A diversity of polysulfurated biomolecules, such as SS−(+)-δ-tocopherol, SS-sulfanilamide, SS-saccharides, SS-amino acids, and SSS-oligopeptides have been established for drug discovery and development.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.nature.com/articles/s41467-018-04306-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04306-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-018-04306-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().