Quantum limit transport and destruction of the Weyl nodes in TaAs
B. J. Ramshaw (),
K. A. Modic,
Arkady Shekhter,
Yi Zhang,
Eun-Ah Kim,
Philip J. W. Moll,
Maja D. Bachmann,
M. K. Chan,
J. B. Betts,
F. Balakirev,
A. Migliori,
N. J. Ghimire,
E. D. Bauer,
F. Ronning and
R. D. McDonald
Additional contact information
B. J. Ramshaw: Cornell University
K. A. Modic: Max-Planck-Institute for Chemical Physics of Solids
Arkady Shekhter: National High Magnetic Field Laboratory
Yi Zhang: Cornell University
Eun-Ah Kim: Cornell University
Philip J. W. Moll: Max-Planck-Institute for Chemical Physics of Solids
Maja D. Bachmann: Max-Planck-Institute for Chemical Physics of Solids
M. K. Chan: Los Alamos National Laboratory
J. B. Betts: Los Alamos National Laboratory
F. Balakirev: Los Alamos National Laboratory
A. Migliori: Los Alamos National Laboratory
N. J. Ghimire: Los Alamos National Laboratory
E. D. Bauer: Los Alamos National Laboratory
F. Ronning: Los Alamos National Laboratory
R. D. McDonald: Los Alamos National Laboratory
Nature Communications, 2018, vol. 9, issue 1, 1-9
Abstract:
Abstract Weyl fermions are a recently discovered ingredient for correlated states of electronic matter. A key difficulty has been that real materials also contain non-Weyl quasiparticles, and disentangling the experimental signatures has proven challenging. Here we use magnetic fields up to 95 T to drive the Weyl semimetal TaAs far into its quantum limit, where only the purely chiral 0th Landau levels of the Weyl fermions are occupied. We find the electrical resistivity to be nearly independent of magnetic field up to 50 T: unusual for conventional metals but consistent with the chiral anomaly for Weyl fermions. Above 50 T we observe a two-order-of-magnitude increase in resistivity, indicating that a gap opens in the chiral Landau levels. Above 80 T we observe strong ultrasonic attenuation below 2 K, suggesting a mesoscopically textured state of matter. These results point the way to inducing new correlated states of matter in the quantum limit of Weyl semimetals.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41467-018-04542-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04542-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-018-04542-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().