Precise synthesis of sulfur-containing polymers via cooperative dual organocatalysts with high activity
Cheng-Jian Zhang,
Hai-Lin Wu,
Yang Li,
Jia-Liang Yang and
Xing-Hong Zhang ()
Additional contact information
Cheng-Jian Zhang: Zhejiang University
Hai-Lin Wu: Zhejiang University
Yang Li: Zhejiang University
Jia-Liang Yang: Zhejiang University
Xing-Hong Zhang: Zhejiang University
Nature Communications, 2018, vol. 9, issue 1, 1-10
Abstract:
Abstract Metal-free and controlled synthesis of sulfur-containing polymer is still a big challenge in polymer chemistry. Here, we report a metal-free, living copolymerization of carbonyl sulfide (COS) with epoxides via the cooperative catalysis of organic Lewis pairs including bases (e.g.: phosphazene, amidine, and guanidine) and thioureas as hydrogen-bond donors, afford well-defined poly(monothiocarbonate)s with 100% alternating degree, >99% tail-to-head content, controlled molecular weights (up to 98.4 kg/mol), and narrow molecular weight distributions (1.13–1.23). The effect of the types of Lewis pairs on the copolymerization of COS with several epoxides is investigated. The turnover frequencies (TOFs) of these Lewis pairs are as high as 112 h−1 at 25 °C. Kinetic and mechanistic results suggest that the supramolecular specific recognition of thiourea to epoxide and base to COS promote the copolymerization cooperatively. This strategy provides commercially available Lewis pairs for metal-free synthesis of sulfur-containing polymers with precise structure.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-018-04554-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04554-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-018-04554-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().