EconPapers    
Economics at your fingertips  
 

Structural basis for recognition of 53BP1 tandem Tudor domain by TIRR

Yaxin Dai, Aili Zhang, Shan Shan, Zihua Gong () and Zheng Zhou ()
Additional contact information
Yaxin Dai: Chinese Academy of Sciences
Aili Zhang: Cleveland Clinic Lerner Research Institute
Shan Shan: Chinese Academy of Sciences
Zihua Gong: Cleveland Clinic Lerner Research Institute
Zheng Zhou: Chinese Academy of Sciences

Nature Communications, 2018, vol. 9, issue 1, 1-12

Abstract: Abstract P53-binding protein 1 (53BP1) regulates the double-strand break (DSB) repair pathway choice. A recently identified 53BP1-binding protein Tudor-interacting repair regulator (TIRR) modulates the access of 53BP1 to DSBs by masking the H4K20me2 binding surface on 53BP1, but the underlying mechanism remains unclear. Here we report the 1.76-Å crystal structure of TIRR in complex with 53BP1 tandem Tudor domain. We demonstrate that the N-terminal region (residues 10–24) and the L8-loop of TIRR interact with 53BP1 Tudor through three loops (L1, L3, and L1′). TIRR recognition blocks H4K20me2 binding to 53BP1 Tudor and modulates 53BP1 functions in vivo. Structure comparisons identify a TIRR histidine (H106) that is absent from the TIRR homolog Nudt16, but essential for 53BP1 Tudor binding. Remarkably, mutations mimicking TIRR binding modules restore the disrupted binding of Nudt16-53BP1 Tudor. Our studies elucidate the mechanism by which TIRR recognizes 53BP1 Tudor and functions as a cellular inhibitor of the histone methyl-lysine readers.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.nature.com/articles/s41467-018-04557-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04557-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-04557-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04557-2