EconPapers    
Economics at your fingertips  
 

Scaling law for excitons in 2D perovskite quantum wells

J.-C. Blancon (), A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even () and A. D. Mohite ()
Additional contact information
J.-C. Blancon: Los Alamos National Laboratory
A. V. Stier: Los Alamos National Laboratory
H. Tsai: Los Alamos National Laboratory
W. Nie: Los Alamos National Laboratory
C. C. Stoumpos: Northwestern University
B. Traoré: ISCR (Institut des Sciences Chimiques de Rennes)–UMR 6226
L. Pedesseau: Institut FOTON–UMR 6082
M. Kepenekian: ISCR (Institut des Sciences Chimiques de Rennes)–UMR 6226
F. Katsutani: Rice University
G. T. Noe: Rice University
J. Kono: Rice University
S. Tretiak: Los Alamos National Laboratory
S. A. Crooker: Los Alamos National Laboratory
C. Katan: ISCR (Institut des Sciences Chimiques de Rennes)–UMR 6226
M. G. Kanatzidis: Northwestern University
J. J. Crochet: Los Alamos National Laboratory
J. Even: Institut FOTON–UMR 6082
A. D. Mohite: Los Alamos National Laboratory

Nature Communications, 2018, vol. 9, issue 1, 1-10

Abstract: Abstract Ruddlesden–Popper halide perovskites are 2D solution-processed quantum wells with a general formula A2A’n-1M n X3n+1, where optoelectronic properties can be tuned by varying the perovskite layer thickness (n-value), and have recently emerged as efficient semiconductors with technologically relevant stability. However, fundamental questions concerning the nature of optical resonances (excitons or free carriers) and the exciton reduced mass, and their scaling with quantum well thickness, which are critical for designing efficient optoelectronic devices, remain unresolved. Here, using optical spectroscopy and 60-Tesla magneto-absorption supported by modeling, we unambiguously demonstrate that the optical resonances arise from tightly bound excitons with both exciton reduced masses and binding energies decreasing, respectively, from 0.221 m0 to 0.186 m0 and from 470 meV to 125 meV with increasing thickness from n equals 1 to 5. Based on this study we propose a general scaling law to determine the binding energy of excitons in perovskite quantum wells of any layer thickness.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-018-04659-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04659-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-04659-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04659-x