EconPapers    
Economics at your fingertips  
 

Coherent exciton-vibrational dynamics and energy transfer in conjugated organics

Tammie R. Nelson, Dianelys Ondarse-Alvarez, Nicolas Oldani, Beatriz Rodriguez-Hernandez, Laura Alfonso-Hernandez, Johan F. Galindo, Valeria D. Kleiman, Sebastian Fernandez-Alberti (), Adrian E. Roitberg and Sergei Tretiak ()
Additional contact information
Tammie R. Nelson: Los Alamos National Laboratory
Dianelys Ondarse-Alvarez: Universidad Nacional de Quilmes/CONICET
Nicolas Oldani: Universidad Nacional de Quilmes/CONICET
Beatriz Rodriguez-Hernandez: Universidad Nacional de Quilmes/CONICET
Laura Alfonso-Hernandez: Universidad Nacional de Quilmes/CONICET
Johan F. Galindo: Universidad Nacional de Colombia
Valeria D. Kleiman: University of Florida
Sebastian Fernandez-Alberti: Universidad Nacional de Quilmes/CONICET
Adrian E. Roitberg: University of Florida
Sergei Tretiak: Los Alamos National Laboratory

Nature Communications, 2018, vol. 9, issue 1, 1-9

Abstract: Abstract Coherence, signifying concurrent electron-vibrational dynamics in complex natural and man-made systems, is currently a subject of intense study. Understanding this phenomenon is important when designing carrier transport in optoelectronic materials. Here, excited state dynamics simulations reveal a ubiquitous pattern in the evolution of photoexcitations for a broad range of molecular systems. Symmetries of the wavefunctions define a specific form of the non-adiabatic coupling that drives quantum transitions between excited states, leading to a collective asymmetric vibrational excitation coupled to the electronic system. This promotes periodic oscillatory evolution of the wavefunctions, preserving specific phase and amplitude relations across the ensemble of trajectories. The simple model proposed here explains the appearance of coherent exciton-vibrational dynamics due to non-adiabatic transitions, which is universal across multiple molecular systems. The observed relationships between electronic wavefunctions and the resulting functionalities allows us to understand, and potentially manipulate, excited state dynamics and energy transfer in molecular materials.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-018-04694-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04694-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-04694-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04694-8