EconPapers    
Economics at your fingertips  
 

Anti-phage islands force their target phage to directly mediate island excision and spread

Amelia C. McKitterick and Kimberley D. Seed ()
Additional contact information
Amelia C. McKitterick: University of California, Berkeley
Kimberley D. Seed: University of California, Berkeley

Nature Communications, 2018, vol. 9, issue 1, 1-8

Abstract: Abstract Vibrio cholerae, the causative agent of the diarrheal disease cholera, is antagonized by the lytic phage ICP1 in the aquatic environment and in human hosts. Mobile genetic elements called PLEs (phage-inducible chromosomal island-like elements) protect V. cholerae from ICP1 infection and initiate their anti-phage response by excising from the chromosome. Here, we show that PLE 1 encodes a large serine recombinase, Int, that exploits an ICP1-specific protein as a recombination directionality factor (RDF) to excise PLE 1 in response to phage infection. We show that this phage-encoded protein is sufficient to direct Int-mediated recombination in vitro and that it is highly conserved in all sequenced ICP1 genomes. Our results uncover an aspect of the molecular specificity underlying the conflict between a single predatory phage and V. cholerae PLE and contribute to our understanding of long-term evolution between phage and their bacterial hosts.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-018-04786-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04786-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-04786-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04786-5