EconPapers    
Economics at your fingertips  
 

Single-layer graphene membranes by crack-free transfer for gas mixture separation

Shiqi Huang, Mostapha Dakhchoune, Wen Luo, Emad Oveisi, Guangwei He, Mojtaba Rezaei, Jing Zhao, Duncan T. L. Alexander, Andreas Züttel, Michael S. Strano and Kumar Varoon Agrawal ()
Additional contact information
Shiqi Huang: École Polytechnique Fédérale de Lausanne (EPFL)
Mostapha Dakhchoune: École Polytechnique Fédérale de Lausanne (EPFL)
Wen Luo: École Polytechnique Fédérale de Lausanne (EPFL)
Emad Oveisi: École Polytechnique Fédérale de Lausanne (EPFL)
Guangwei He: École Polytechnique Fédérale de Lausanne (EPFL)
Mojtaba Rezaei: École Polytechnique Fédérale de Lausanne (EPFL)
Jing Zhao: École Polytechnique Fédérale de Lausanne (EPFL)
Duncan T. L. Alexander: École Polytechnique Fédérale de Lausanne (EPFL)
Andreas Züttel: École Polytechnique Fédérale de Lausanne (EPFL)
Michael S. Strano: Massachusetts Institute of Technology
Kumar Varoon Agrawal: École Polytechnique Fédérale de Lausanne (EPFL)

Nature Communications, 2018, vol. 9, issue 1, 1-11

Abstract: Abstract The single-layer graphene film, when incorporated with molecular-sized pores, is predicted to be the ultimate membrane. However, the major bottlenecks have been the crack-free transfer of large-area graphene on a porous support, and the incorporation of molecular-sized nanopores. Herein, we report a nanoporous-carbon-assisted transfer technique, yielding a relatively large area (1 mm2), crack-free, suspended graphene film. Gas-sieving (H2/CH4 selectivity up to 25) is observed from the intrinsic defects generated during the chemical-vapor deposition of graphene. Despite the ultralow porosity of 0.025%, an attractive H2 permeance (up to 4.1 × 10−7 mol m−2 s−1 Pa−1) is observed. Finally, we report ozone functionalization-based etching and pore-modification chemistry to etch hydrogen-selective pores, and to shrink the pore-size, improving H2 permeance (up to 300%) and H2/CH4 selectivity (up to 150%). Overall, the scalable transfer, etching, and functionalization methods developed herein are expected to bring nanoporous graphene membranes a step closer to reality.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/s41467-018-04904-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04904-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-04904-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04904-3