Tailoring van der Waals dispersion interactions with external electric charges
Andrii Kleshchonok and
Alexandre Tkatchenko ()
Additional contact information
Andrii Kleshchonok: Fritz-Haber-Institut der Max-Planck-Gesellschaft
Alexandre Tkatchenko: University of Luxembourg
Nature Communications, 2018, vol. 9, issue 1, 1-9
Abstract:
Abstract van der Waals (vdW) dispersion interactions strongly impact the properties of molecules and materials. Often, the description of vdW interactions should account for the coupling with pervasive electric fields, stemming from membranes, ionic channels, liquids, or nearby charged functional groups. However, this quantum-mechanical effect has been omitted in atomistic simulations, even in widely employed electronic-structure methods. Here, we develop a model and study the effects of an external charge on long-range vdW correlations. We show that a positive external charge stabilizes dispersion interactions, whereas a negative charge has an opposite effect. Our analytical results are benchmarked on a series of (bio)molecular dimers and supported by calculations with high-level correlated quantum-chemical methods, which estimate the induced dispersion to reach up to 35% of intermolecular binding energy (4 kT for amino-acid dimers at room temperature). Our analysis bridges electrostatic and electrodynamic descriptions of intermolecular interactions and may have implications for non-covalent reactions, exfoliation, dissolution, and permeation through biological membranes.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-018-05407-x Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05407-x
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-018-05407-x
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().