EconPapers    
Economics at your fingertips  
 

Genome-wide identification of directed gene networks using large-scale population genomics data

René Luijk, Koen F. Dekkers, Maarten Iterson, Wibowo Arindrarto, Annique Claringbould, Paul Hop, Dorret I. Boomsma, Cornelia M. Duijn, Marleen M. J. Greevenbroek, Jan H. Veldink, Cisca Wijmenga, Lude Franke, Peter A. C. ’t Hoen, Rick Jansen, Joyce Meurs, Hailiang Mei, P. Eline Slagboom, Bastiaan T. Heijmans () and Erik W. Zwet ()
Additional contact information
René Luijk: Leiden University Medical Center, Leiden
Koen F. Dekkers: Leiden University Medical Center, Leiden
Maarten Iterson: Leiden University Medical Center, Leiden
Wibowo Arindrarto: Leiden University Medical Center, Leiden
Annique Claringbould: University of Groningen, University Medical Centre Groningen
Paul Hop: Leiden University Medical Center, Leiden
Dorret I. Boomsma: VU University Amsterdam
Cornelia M. Duijn: ErasmusMC
Marleen M. J. Greevenbroek: Maastricht University Medical Center
Jan H. Veldink: University Medical Center Utrecht
Cisca Wijmenga: University of Groningen, University Medical Centre Groningen
Lude Franke: University of Groningen, University Medical Centre Groningen
Peter A. C. ’t Hoen: Leiden University Medical Center, Leiden
Rick Jansen: VU University Medical Center
Joyce Meurs: ErasmusMC
Hailiang Mei: Leiden University Medical Center, Leiden
P. Eline Slagboom: Leiden University Medical Center, Leiden
Bastiaan T. Heijmans: Leiden University Medical Center, Leiden
Erik W. Zwet: Leiden University Medical Center, Leiden

Nature Communications, 2018, vol. 9, issue 1, 1-10

Abstract: Abstract Identification of causal drivers behind regulatory gene networks is crucial in understanding gene function. Here, we develop a method for the large-scale inference of gene–gene interactions in observational population genomics data that are both directed (using local genetic instruments as causal anchors, akin to Mendelian Randomization) and specific (by controlling for linkage disequilibrium and pleiotropy). Analysis of genotype and whole-blood RNA-sequencing data from 3072 individuals identified 49 genes as drivers of downstream transcriptional changes (Wald P

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-018-05452-6 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05452-6

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-05452-6

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05452-6