Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity
Max Waldherr,
Nils Lundt,
Martin Klaas,
Simon Betzold,
Matthias Wurdack,
Vasilij Baumann,
Eliezer Estrecho,
Anton Nalitov,
Evgenia Cherotchenko,
Hui Cai,
Elena A. Ostrovskaya,
Alexey V. Kavokin,
Sefaattin Tongay,
Sebastian Klembt,
Sven Höfling and
Christian Schneider ()
Additional contact information
Max Waldherr: Universität Würzburg
Nils Lundt: Universität Würzburg
Martin Klaas: Universität Würzburg
Simon Betzold: Universität Würzburg
Matthias Wurdack: Universität Würzburg
Vasilij Baumann: Universität Würzburg
Eliezer Estrecho: The Australian National University
Anton Nalitov: University of Iceland
Evgenia Cherotchenko: ITMO University
Hui Cai: Arizona State University
Elena A. Ostrovskaya: The Australian National University
Alexey V. Kavokin: University of Southampton
Sefaattin Tongay: Arizona State University
Sebastian Klembt: Universität Würzburg
Sven Höfling: Universität Würzburg
Christian Schneider: Universität Würzburg
Nature Communications, 2018, vol. 9, issue 1, 1-6
Abstract:
Abstract Bosonic condensation belongs to the most intriguing phenomena in physics, and was mostly reserved for experiments with ultra-cold quantum gases. More recently, it became accessible in exciton-based solid-state systems at elevated temperatures. Here, we demonstrate bosonic condensation driven by excitons hosted in an atomically thin layer of MoSe2, strongly coupled to light in a solid-state resonator. The structure is operated in the regime of collective strong coupling between a Tamm-plasmon resonance, GaAs quantum well excitons, and two-dimensional excitons confined in the monolayer crystal. Polariton condensation in a monolayer crystal manifests by a superlinear increase of emission intensity from the hybrid polariton mode, its density-dependent blueshift, and a dramatic collapse of the emission linewidth, a hallmark of temporal coherence. Importantly, we observe a significant spin-polarization in the injected polariton condensate, a fingerprint for spin-valley locking in monolayer excitons. Our results pave the way towards highly nonlinear, coherent valleytronic devices and light sources.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-018-05532-7 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05532-7
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-018-05532-7
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().