EconPapers    
Economics at your fingertips  
 

Critical Southern Ocean climate model biases traced to atmospheric model cloud errors

Patrick Hyder (), John M. Edwards, Richard P. Allan, Helene T. Hewitt, Thomas J. Bracegirdle, Jonathan M. Gregory, Richard A. Wood, Andrew J. S. Meijers, Jane Mulcahy, Paul Field, Kalli Furtado, Alejandro Bodas-Salcedo, Keith D. Williams, Dan Copsey, Simon A. Josey, Chunlei Liu, Chris D. Roberts, Claudio Sanchez, Jeff Ridley, Livia Thorpe, Steven C. Hardiman, Michael Mayer, David I. Berry and Stephen E. Belcher
Additional contact information
Patrick Hyder: Met Office Hadley Centre
John M. Edwards: Met Office Hadley Centre
Richard P. Allan: University of Reading
Helene T. Hewitt: Met Office Hadley Centre
Thomas J. Bracegirdle: British Antarctic Survey
Jonathan M. Gregory: Met Office Hadley Centre
Richard A. Wood: Met Office Hadley Centre
Andrew J. S. Meijers: British Antarctic Survey
Jane Mulcahy: Met Office Hadley Centre
Paul Field: Met Office Hadley Centre
Kalli Furtado: Met Office Hadley Centre
Alejandro Bodas-Salcedo: Met Office Hadley Centre
Keith D. Williams: Met Office Hadley Centre
Dan Copsey: Met Office Hadley Centre
Simon A. Josey: National Oceanography Centre
Chunlei Liu: University of Reading
Chris D. Roberts: Met Office Hadley Centre
Claudio Sanchez: Met Office Hadley Centre
Jeff Ridley: Met Office Hadley Centre
Livia Thorpe: Met Office Hadley Centre
Steven C. Hardiman: Met Office Hadley Centre
Michael Mayer: University of Vienna
David I. Berry: National Oceanography Centre
Stephen E. Belcher: Met Office Hadley Centre

Nature Communications, 2018, vol. 9, issue 1, 1-17

Abstract: Abstract The Southern Ocean is a pivotal component of the global climate system yet it is poorly represented in climate models, with significant biases in upper-ocean temperatures, clouds and winds. Combining Atmospheric and Coupled Model Inter-comparison Project (AMIP5/CMIP5) simulations, with observations and equilibrium heat budget theory, we show that across the CMIP5 ensemble variations in sea surface temperature biases in the 40–60°S Southern Ocean are primarily caused by AMIP5 atmospheric model net surface flux bias variations, linked to cloud-related short-wave errors. Equilibration of the biases involves local coupled sea surface temperature bias feedbacks onto the surface heat flux components. In combination with wind feedbacks, these biases adversely modify upper-ocean thermal structure. Most AMIP5 atmospheric models that exhibit small net heat flux biases appear to achieve this through compensating errors. We demonstrate that targeted developments to cloud-related parameterisations provide a route to better represent the Southern Ocean in climate models and projections.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-018-05634-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05634-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-05634-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05634-2