EconPapers    
Economics at your fingertips  
 

Self-organization of active particles by quorum sensing rules

Tobias Bäuerle, Andreas Fischer, Thomas Speck and Clemens Bechinger ()
Additional contact information
Tobias Bäuerle: Universität Konstanz
Andreas Fischer: Johannes Gutenberg-Universität Mainz
Thomas Speck: Johannes Gutenberg-Universität Mainz
Clemens Bechinger: Universität Konstanz

Nature Communications, 2018, vol. 9, issue 1, 1-8

Abstract: Abstract Many microorganisms regulate their behaviour according to the density of neighbours. Such quorum sensing is important for the communication and organisation within bacterial populations. In contrast to living systems, where quorum sensing is determined by biochemical processes, the behaviour of synthetic active particles can be controlled by external fields. Accordingly they allow to investigate how variations of a density-dependent particle response affect their self-organisation. Here we experimentally and numerically demonstrate this concept using a suspension of light-activated active particles whose motility is individually controlled by an external feedback-loop, realised by a particle detection algorithm and a scanning laser system. Depending on how the particles’ motility varies with the density of neighbours, the system self-organises into aggregates with different size, density and shape. Since the individual particles’ response to their environment is almost freely programmable, this allows for detailed insights on how communication between motile particles affects their collective properties.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/s41467-018-05675-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05675-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-05675-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05675-7