Selective conversion of CO2 and H2 into aromatics
Youming Ni,
Zhiyang Chen,
Yi Fu,
Yong Liu,
Wenliang Zhu () and
Zhongmin Liu ()
Additional contact information
Youming Ni: Chinese Academy of Sciences
Zhiyang Chen: Chinese Academy of Sciences
Yi Fu: Chinese Academy of Sciences
Yong Liu: Chinese Academy of Sciences
Wenliang Zhu: Chinese Academy of Sciences
Zhongmin Liu: Chinese Academy of Sciences
Nature Communications, 2018, vol. 9, issue 1, 1-7
Abstract:
Abstract Transformation of greenhouse gas CO2 and renewable H2 into fuels and commodity chemicals is recognized as a promising route to store fluctuating renewable energy. Although several C1 chemicals, olefins, and gasoline have been successfully synthesized by CO2 hydrogenation, selective conversion of CO2 and H2 into aromatics is still challenging due to the high unsaturation degree and complex structures of aromatics. Here we report a composite catalyst of ZnAlOx and H-ZSM-5 which yields high aromatics selectivity (73.9%) with extremely low CH4 selectivity (0.4%) among the carbon products without CO. Methanol and dimethyl ether, which are synthesized by hydrogenation of formate species formed on ZnAlOx surface, are transmitted to H-ZSM-5 and subsequently converted into olefins and finally aromatics. Furthermore, 58.1% p-xylene in xylenes is achieved over the composite catalyst containing Si-H-ZSM-5. ZnAlOx&H-ZSM-5 suggests a promising application in manufacturing aromatics from CO2 and H2.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.nature.com/articles/s41467-018-05880-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05880-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-018-05880-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().