EconPapers    
Economics at your fingertips  
 

SMRT-Cappable-seq reveals complex operon variants in bacteria

Bo Yan, Matthew Boitano, Tyson A. Clark and Laurence Ettwiller ()
Additional contact information
Bo Yan: New England Biolabs Inc.
Matthew Boitano: PacBio
Tyson A. Clark: PacBio
Laurence Ettwiller: New England Biolabs Inc.

Nature Communications, 2018, vol. 9, issue 1, 1-11

Abstract: Abstract Current methods for genome-wide analysis of gene expression require fragmentation of original transcripts into small fragments for short-read sequencing. In bacteria, the resulting fragmented information hides operon complexity. Additionally, in vivo processing of transcripts confounds the accurate identification of the 5′ and 3′ ends of operons. Here we develop a methodology called SMRT-Cappable-seq that combines the isolation of un-fragmented primary transcripts with single-molecule long read sequencing. Applied to E. coli, this technology results in an accurate definition of the transcriptome with 34% of known operons from RegulonDB being extended by at least one gene. Furthermore, 40% of transcription termination sites have read-through that alters the gene content of the operons. As a result, most of the bacterial genes are present in multiple operon variants reminiscent of eukaryotic splicing. By providing such granularity in the operon structure, this study represents an important resource for the study of prokaryotic gene network and regulation.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/s41467-018-05997-6 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05997-6

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-05997-6

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05997-6