A systems-level framework for drug discovery identifies Csf1R as an anti-epileptic drug target
Prashant K. Srivastava,
Jonathan van Eyll,
Patrice Godard,
Manuela Mazzuferi,
Andree Delahaye-Duriez,
Juliette Van Steenwinckel,
Pierre Gressens,
Benedicte Danis,
Catherine Vandenplas,
Patrik Foerch,
Karine Leclercq,
Georges Mairet-Coello,
Alvaro Cardenas,
Frederic Vanclef,
Liisi Laaniste,
Isabelle Niespodziany,
James Keaney,
Julien Gasser,
Gaelle Gillet,
Kirill Shkura,
Seon-Ah Chong,
Jacques Behmoaras,
Irena Kadiu,
Enrico Petretto (),
Rafal M. Kaminski () and
Michael R. Johnson ()
Additional contact information
Prashant K. Srivastava: Imperial College London
Jonathan van Eyll: UCB Pharma
Patrice Godard: Clarivate Analytics (formerly the IP & Science Business of Thomson Reuters)
Manuela Mazzuferi: UCB Pharma
Andree Delahaye-Duriez: Imperial College London
Juliette Van Steenwinckel: Université Paris Diderot
Pierre Gressens: Université Paris Diderot
Benedicte Danis: UCB Pharma
Catherine Vandenplas: UCB Pharma
Patrik Foerch: UCB Pharma
Karine Leclercq: UCB Pharma
Georges Mairet-Coello: UCB Pharma
Alvaro Cardenas: UCB Pharma
Frederic Vanclef: UCB Pharma
Liisi Laaniste: Imperial College London
Isabelle Niespodziany: UCB Pharma
James Keaney: UCB Pharma
Julien Gasser: UCB Pharma
Gaelle Gillet: UCB Pharma
Kirill Shkura: Imperial College London
Seon-Ah Chong: UCB Pharma
Jacques Behmoaras: Imperial College London
Irena Kadiu: UCB Pharma
Enrico Petretto: Centre for Computational Biology
Rafal M. Kaminski: UCB Pharma
Michael R. Johnson: Imperial College London
Nature Communications, 2018, vol. 9, issue 1, 1-15
Abstract:
Abstract The identification of drug targets is highly challenging, particularly for diseases of the brain. To address this problem, we developed and experimentally validated a general computational framework for drug target discovery that combines gene regulatory information with causal reasoning (“Causal Reasoning Analytical Framework for Target discovery”—CRAFT). Using a systems genetics approach and starting from gene expression data from the target tissue, CRAFT provides a predictive framework for identifying cell membrane receptors with a direction-specified influence over disease-related gene expression profiles. As proof of concept, we applied CRAFT to epilepsy and predicted the tyrosine kinase receptor Csf1R as a potential therapeutic target. The predicted effect of Csf1R blockade in attenuating epilepsy seizures was validated in three pre-clinical models of epilepsy. These results highlight CRAFT as a systems-level framework for target discovery and suggest Csf1R blockade as a novel therapeutic strategy in epilepsy. CRAFT is applicable to disease settings other than epilepsy.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-018-06008-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06008-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-018-06008-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().