EconPapers    
Economics at your fingertips  
 

An OB-fold complex controls the repair pathways for DNA double-strand breaks

Shengxian Gao, Sumin Feng, Shaokai Ning, Jingyan Liu, Huayu Zhao, Yixi Xu, Jinfeng Shang, Kejiao Li, Qing Li, Rong Guo () and Dongyi Xu ()
Additional contact information
Shengxian Gao: Peking University
Sumin Feng: Peking University
Shaokai Ning: Peking University
Jingyan Liu: Peking University
Huayu Zhao: Peking University
Yixi Xu: Peking University
Jinfeng Shang: Peking University
Kejiao Li: Peking University
Qing Li: Peking University
Rong Guo: Peking University
Dongyi Xu: Peking University

Nature Communications, 2018, vol. 9, issue 1, 1-10

Abstract: Abstract 53BP1 with its downstream proteins, RIF1, PTIP and REV7, antagonizes BRCA1-dependent homologous recombination (HR) and promotes non-homologous end joining (NHEJ) in an unclear manner. Here we show that REV7 forms a complex with two proteins, FAM35A and C20ORF196. We demonstrate that FAM35A preferentially binds single-strand DNA (ssDNA) in vitro, and is recruited to DSBs as a complex with C20ORF196 and REV7 downstream of RIF1 in vivo. Epistasis analysis shows that both proteins act in the same pathway as RIF1 in NHEJ. The defects in HR pathway to repair DSBs and the reduction in resection of broken DNA ends in BRCA1-mutant cells can be largely suppressed by inactivating FAM35A or C20ORF196, indicating that FAM35A and C20ORF196 prevent end resection in these cells. Together, our data identified a REV7–FAM35A–C20ORF196 complex that binds and protects broken DNA ends to promote the NHEJ pathway for DSB repair.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.nature.com/articles/s41467-018-06407-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06407-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-06407-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06407-7