EconPapers    
Economics at your fingertips  
 

Resonant torsion magnetometry in anisotropic quantum materials

K. A. Modic (), Maja D. Bachmann, B. J. Ramshaw, F. Arnold, K. R. Shirer, Amelia Estry, J. B. Betts, Nirmal J. Ghimire, E. D. Bauer, Marcus Schmidt, Michael Baenitz, E. Svanidze, Ross D. McDonald, Arkady Shekhter and Philip J. W. Moll ()
Additional contact information
K. A. Modic: Max-Planck-Institute for Chemical Physics of Solids
Maja D. Bachmann: Max-Planck-Institute for Chemical Physics of Solids
B. J. Ramshaw: Cornell University
F. Arnold: Max-Planck-Institute for Chemical Physics of Solids
K. R. Shirer: Max-Planck-Institute for Chemical Physics of Solids
Amelia Estry: Max-Planck-Institute for Chemical Physics of Solids
J. B. Betts: Los Alamos National Laboratory
Nirmal J. Ghimire: Los Alamos National Laboratory
E. D. Bauer: Los Alamos National Laboratory
Marcus Schmidt: Max-Planck-Institute for Chemical Physics of Solids
Michael Baenitz: Max-Planck-Institute for Chemical Physics of Solids
E. Svanidze: Max-Planck-Institute for Chemical Physics of Solids
Ross D. McDonald: Los Alamos National Laboratory
Arkady Shekhter: Florida State University
Philip J. W. Moll: Max-Planck-Institute for Chemical Physics of Solids

Nature Communications, 2018, vol. 9, issue 1, 1-8

Abstract: Abstract Unusual behavior in quantum materials commonly arises from their effective low-dimensional physics, reflecting the underlying anisotropy in the spin and charge degrees of freedom. Here we introduce the magnetotropic coefficient k = ∂2F/∂θ2, the second derivative of the free energy F with respect to the magnetic field orientation θ in the crystal. We show that the magnetotropic coefficient can be quantitatively determined from a shift in the resonant frequency of a commercially available atomic force microscopy cantilever under magnetic field. This detection method enables part per 100 million sensitivity and the ability to measure magnetic anisotropy in nanogram-scale samples, as demonstrated on the Weyl semimetal NbP. Measurement of the magnetotropic coefficient in the spin-liquid candidate RuCl3 highlights its sensitivity to anisotropic phase transitions and allows a quantitative comparison to other thermodynamic coefficients via the Ehrenfest relations.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-018-06412-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06412-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-06412-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06412-w