EconPapers    
Economics at your fingertips  
 

Using both qualitative and quantitative data in parameter identification for systems biology models

Eshan D. Mitra, Raquel Dias, Richard G. Posner and William S. Hlavacek ()
Additional contact information
Eshan D. Mitra: Los Alamos National Laboratory
Raquel Dias: Northern Arizona University
Richard G. Posner: Northern Arizona University
William S. Hlavacek: Los Alamos National Laboratory

Nature Communications, 2018, vol. 9, issue 1, 1-8

Abstract: Abstract In systems biology, qualitative data are often generated, but rarely used to parameterize models. We demonstrate an approach in which qualitative and quantitative data can be combined for parameter identification. In this approach, qualitative data are converted into inequality constraints imposed on the outputs of the model. These inequalities are used along with quantitative data points to construct a single scalar objective function that accounts for both datasets. To illustrate the approach, we estimate parameters for a simple model describing Raf activation. We then apply the technique to a more elaborate model characterizing cell cycle regulation in yeast. We incorporate both quantitative time courses (561 data points) and qualitative phenotypes of 119 mutant yeast strains (1647 inequalities) to perform automated identification of 153 model parameters. We quantify parameter uncertainty using a profile likelihood approach. Our results indicate the value of combining qualitative and quantitative data to parameterize systems biology models.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-018-06439-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06439-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-06439-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06439-z