EconPapers    
Economics at your fingertips  
 

A modified serine cycle in Escherichia coli coverts methanol and CO2 to two-carbon compounds

Hong Yu and James C. Liao ()
Additional contact information
Hong Yu: University of California
James C. Liao: Academia Sinica

Nature Communications, 2018, vol. 9, issue 1, 1-10

Abstract: Abstract Microbial utilization of renewable one-carbon compounds, such as methane, methanol, formic acid, and CO2, has emerged as a potential approach to increase the range of carbon sources for bioproduction and address climate change issues. Here, we modify the natural serine cycle present in methylotrophs and build an adapted pathway for Escherichia coli, which allows microorganism to condense methanol (or formate) together with bicarbonate to produce various products. We introduce the modified cycle into E. coli and demonstrate its capability for one-carbon assimilation through growth complementation and isotope labeling experiments. We also demonstrate conversion of methanol to ethanol by utilizing the modified serine cycle in an engineered E. coli strain, achieving a reaction yet to be accomplished by a one-pot chemical process. This work provides a platform to utilize various renewable one-carbon compounds as carbon sources for biosynthesis through a modified serine cycle in E. coli.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/s41467-018-06496-4 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06496-4

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-06496-4

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06496-4