A biomaterial with a channel-like pore architecture induces endochondral healing of bone defects
A. Petersen (),
A. Princ,
G. Korus,
A. Ellinghaus,
H. Leemhuis,
A. Herrera,
A. Klaumünzer,
S. Schreivogel,
A. Woloszyk,
K. Schmidt-Bleek,
S. Geissler,
I. Heschel and
G. N. Duda
Additional contact information
A. Petersen: Julius Wolff Institute, Charité—Universitätsmedizin Berlin
A. Princ: Julius Wolff Institute, Charité—Universitätsmedizin Berlin
G. Korus: Julius Wolff Institute, Charité—Universitätsmedizin Berlin
A. Ellinghaus: Julius Wolff Institute, Charité—Universitätsmedizin Berlin
H. Leemhuis: Matricel GmbH
A. Herrera: Julius Wolff Institute, Charité—Universitätsmedizin Berlin
A. Klaumünzer: Julius Wolff Institute, Charité—Universitätsmedizin Berlin
S. Schreivogel: Julius Wolff Institute, Charité—Universitätsmedizin Berlin
A. Woloszyk: Julius Wolff Institute, Charité—Universitätsmedizin Berlin
K. Schmidt-Bleek: Julius Wolff Institute, Charité—Universitätsmedizin Berlin
S. Geissler: Julius Wolff Institute, Charité—Universitätsmedizin Berlin
I. Heschel: Matricel GmbH
G. N. Duda: Julius Wolff Institute, Charité—Universitätsmedizin Berlin
Nature Communications, 2018, vol. 9, issue 1, 1-16
Abstract:
Abstract Biomaterials developed to treat bone defects have classically focused on bone healing via direct, intramembranous ossification. In contrast, most bones in our body develop from a cartilage template via a second pathway called endochondral ossification. The unsolved clinical challenge to regenerate large bone defects has brought endochondral ossification into discussion as an alternative approach for bone healing. However, a biomaterial strategy for the regeneration of large bone defects via endochondral ossification is missing. Here we report on a biomaterial with a channel-like pore architecture to control cell recruitment and tissue patterning in the early phase of healing. In consequence of extracellular matrix alignment, CD146+ progenitor cell accumulation and restrained vascularization, a highly organized endochondral ossification process is induced in rats. Our findings demonstrate that a pure biomaterial approach has the potential to recapitulate a developmental bone growth process for bone healing. This might motivate future strategies for biomaterial-based tissue regeneration.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41467-018-06504-7 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06504-7
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-018-06504-7
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().