Synthesis and assembly of colloidal cuboids with tunable shape biaxiality
Yang Yang,
Guangdong Chen,
Srinivas Thanneeru,
Jie He,
Kun Liu () and
Zhihong Nie ()
Additional contact information
Yang Yang: University of Maryland
Guangdong Chen: University of Maryland
Srinivas Thanneeru: University of Connecticut
Jie He: University of Connecticut
Kun Liu: Jilin University
Zhihong Nie: University of Maryland
Nature Communications, 2018, vol. 9, issue 1, 1-8
Abstract:
Abstract The design and assembly of monodisperse colloidal particles not only advances the development of functional materials, but also provides colloidal model systems for understanding phase behaviors of molecules. This communication describes the gram-scale synthesis of highly uniform colloidal cuboids with tunable dimension and shape biaxiality and their molecular mesogen-like assembly into various mesophasic structures in pristine purity. The synthesis relies on the nanoemulsion-guided generation of ammonium sulfate crystals that template the subsequent silica coating. The shape of the cuboidal particles can be tuned from square platelike, to biaxial boardlike, and to rodlike by independently controlling the length, width and thickness of the particles. We demonstrated the assembly of the cuboidal colloids into highly pure mesoscopic liquid crystal phases, including smectic A, biaxial smectic A, crystal B, discotic, and columnar phases, as well as established a correlation between mesophasic formation and colloidal biaxiality in experiments.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41467-018-06975-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06975-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-018-06975-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().