EconPapers    
Economics at your fingertips  
 

Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition

Alfonso Saiz-Lopez (), Sebastian P. Sitkiewicz, Daniel Roca-Sanjuán, Josep M. Oliva-Enrich, Juan Z. Dávalos, Rafael Notario, Martin Jiskra, Yang Xu, Feiyue Wang, Colin P. Thackray, Elsie M. Sunderland, Daniel J. Jacob, Oleg Travnikov, Carlos A. Cuevas, A. Ulises Acuña, Daniel Rivero, John M. C. Plane, Douglas E. Kinnison and Jeroen E. Sonke
Additional contact information
Alfonso Saiz-Lopez: Institute of Physical Chemistry Rocasolano, CSIC
Sebastian P. Sitkiewicz: Euskal Herriko Unibertsitatea UPV/EHU and Donostia International Physics Center (DIPC)
Daniel Roca-Sanjuán: Universitat de Valencia
Josep M. Oliva-Enrich: Institute of Physical Chemistry Rocasolano, CSIC
Juan Z. Dávalos: Institute of Physical Chemistry Rocasolano, CSIC
Rafael Notario: Institute of Physical Chemistry Rocasolano, CSIC
Martin Jiskra: CNRS/OMP/Université de Toulouse
Yang Xu: CNRS/OMP/Université de Toulouse
Feiyue Wang: University of Manitoba
Colin P. Thackray: Harvard University
Elsie M. Sunderland: Harvard University
Daniel J. Jacob: Harvard University
Oleg Travnikov: Meteorological Synthesizing Centre – East of EMEP
Carlos A. Cuevas: Institute of Physical Chemistry Rocasolano, CSIC
A. Ulises Acuña: Institute of Physical Chemistry Rocasolano, CSIC
Daniel Rivero: Institute of Physical Chemistry Rocasolano, CSIC
John M. C. Plane: University of Leeds
Douglas E. Kinnison: Atmospheric Chemistry Observations and Modelling, NCAR
Jeroen E. Sonke: CNRS/OMP/Université de Toulouse

Nature Communications, 2018, vol. 9, issue 1, 1-9

Abstract: Abstract Anthropogenic mercury (Hg(0)) emissions oxidize to gaseous Hg(II) compounds, before deposition to Earth surface ecosystems. Atmospheric reduction of Hg(II) competes with deposition, thereby modifying the magnitude and pattern of Hg deposition. Global Hg models have postulated that Hg(II) reduction in the atmosphere occurs through aqueous-phase photoreduction that may take place in clouds. Here we report that experimental rainfall Hg(II) photoreduction rates are much slower than modelled rates. We compute absorption cross sections of Hg(II) compounds and show that fast gas-phase Hg(II) photolysis can dominate atmospheric mercury reduction and lead to a substantial increase in the modelled, global atmospheric Hg lifetime by a factor two. Models with Hg(II) photolysis show enhanced Hg(0) deposition to land, which may prolong recovery of aquatic ecosystems long after Hg emissions are lowered, due to the longer residence time of Hg in soils compared with the ocean. Fast Hg(II) photolysis substantially changes atmospheric Hg dynamics and requires further assessment at regional and local scales.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-018-07075-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07075-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-07075-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07075-3