EconPapers    
Economics at your fingertips  
 

Effective removal of mercury from aqueous streams via electrochemical alloy formation on platinum

Cristian Tunsu and Björn Wickman ()
Additional contact information
Cristian Tunsu: Chalmers University of Technology
Björn Wickman: Chalmers University of Technology

Nature Communications, 2018, vol. 9, issue 1, 1-9

Abstract: Abstract Retrieval of mercury from aqueous streams has significant environmental and societal importance due to its very high toxicity and mobility. We present here a method to retrieve mercury from aqueous feeds via electrochemical alloy formation on thin platinum films. This application is a green and effective alternative to traditional chemical decontamination techniques. Under applied potential, mercury ions in solution form a stable PtHg4 alloy with platinum on the cathode. A 100 nanometres platinum film was fully converted to a 750 nanometres thick layer of PtHg4. The overall removal capacity is very high, > 88 g mercury per cm3. The electrodes can easily be regenerated after use. Efficient and selective decontamination is possible in a wide pH range, allowing processing of industrial, municipal, and natural waters. The method is suited for both high and low concentrations of mercury and can reduce mercury levels far below the limits allowed in drinking water.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-018-07300-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07300-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-07300-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07300-z