Melt-driven erosion in microparticle impact
Mostafa Hassani-Gangaraj,
David Veysset,
Keith A. Nelson and
Christopher A. Schuh ()
Additional contact information
Mostafa Hassani-Gangaraj: MIT
David Veysset: MIT
Keith A. Nelson: MIT
Christopher A. Schuh: MIT
Nature Communications, 2018, vol. 9, issue 1, 1-7
Abstract:
Abstract Impact-induced erosion is the ablation of matter caused by being physically struck by another object. While this phenomenon is known, it is empirically challenging to study mechanistically because of the short timescales and small length scales involved. Here, we resolve supersonic impact erosion in situ with micrometer- and nanosecond-level spatiotemporal resolution. We show, in real time, how metallic microparticles (~10-μm) cross from the regimes of rebound and bonding to the more extreme regime that involves erosion. We find that erosion in normal impact of ductile metallic materials is melt-driven, and establish a mechanistic framework to predict the erosion velocity.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-018-07509-y Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07509-y
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-018-07509-y
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().