Constructing exact representations of quantum many-body systems with deep neural networks
Giuseppe Carleo (),
Yusuke Nomura and
Masatoshi Imada
Additional contact information
Giuseppe Carleo: Flatiron Institute
Yusuke Nomura: The University of Tokyo
Masatoshi Imada: The University of Tokyo
Nature Communications, 2018, vol. 9, issue 1, 1-11
Abstract:
Abstract Obtaining accurate properties of many-body interacting quantum matter is a long-standing challenge in theoretical physics and chemistry, rooting into the complexity of the many-body wave-function. Classical representations of many-body states constitute a key tool for both analytical and numerical approaches to interacting quantum problems. Here, we introduce a technique to construct classical representations of many-body quantum systems based on artificial neural networks. Our constructions are based on the deep Boltzmann machine architecture, in which two layers of hidden neurons mediate quantum correlations. The approach reproduces the exact imaginary-time evolution for many-body lattice Hamiltonians, is completely deterministic, and yields networks with a polynomially-scaling number of neurons. We provide examples where physical properties of spin Hamiltonians can be efficiently obtained. Also, we show how systematic improvements upon existing restricted Boltzmann machines ansatze can be obtained. Our method is an alternative to the standard path integral and opens new routes in representing quantum many-body states.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-018-07520-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07520-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-018-07520-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().