EconPapers    
Economics at your fingertips  
 

A fast quantum interface between different spin qubit encodings

A. Noiri (), T. Nakajima, J. Yoneda, M. R. Delbecq, P. Stano, T. Otsuka, K. Takeda, S. Amaha, G. Allison, K. Kawasaki, Y. Kojima, A. Ludwig, A. D. Wieck, D. Loss and S. Tarucha ()
Additional contact information
A. Noiri: RIKEN, Center for Emergent Matter Science (CEMS)
T. Nakajima: RIKEN, Center for Emergent Matter Science (CEMS)
J. Yoneda: RIKEN, Center for Emergent Matter Science (CEMS)
M. R. Delbecq: RIKEN, Center for Emergent Matter Science (CEMS)
P. Stano: RIKEN, Center for Emergent Matter Science (CEMS)
T. Otsuka: RIKEN, Center for Emergent Matter Science (CEMS)
K. Takeda: RIKEN, Center for Emergent Matter Science (CEMS)
S. Amaha: RIKEN, Center for Emergent Matter Science (CEMS)
G. Allison: RIKEN, Center for Emergent Matter Science (CEMS)
K. Kawasaki: University of Tokyo
Y. Kojima: University of Tokyo
A. Ludwig: Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum
A. D. Wieck: Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum
D. Loss: RIKEN, Center for Emergent Matter Science (CEMS)
S. Tarucha: RIKEN, Center for Emergent Matter Science (CEMS)

Nature Communications, 2018, vol. 9, issue 1, 1-7

Abstract: Abstract Single-spin qubits in semiconductor quantum dots hold promise for universal quantum computation with demonstrations of a high single-qubit gate fidelity above 99.9% and two-qubit gates in conjunction with a long coherence time. However, initialization and readout of a qubit is orders of magnitude slower than control, which is detrimental for implementing measurement-based protocols such as error-correcting codes. In contrast, a singlet-triplet qubit, encoded in a two-spin subspace, has the virtue of fast readout with high fidelity. Here, we present a hybrid system which benefits from the different advantages of these two distinct spin-qubit implementations. A quantum interface between the two codes is realized by electrically tunable inter-qubit exchange coupling. We demonstrate a controlled-phase gate that acts within 5.5 ns, much faster than the measured dephasing time of 211 ns. The presented hybrid architecture will be useful to settle remaining key problems with building scalable spin-based quantum computers.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-018-07522-1 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07522-1

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-07522-1

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07522-1