Identification of ADAR1 adenosine deaminase dependency in a subset of cancer cells
Hugh S. Gannon,
Tao Zou,
Michael K. Kiessling,
Galen F. Gao,
Diana Cai,
Peter S. Choi,
Alexandru P. Ivan,
Ilana Buchumenski,
Ashton C. Berger,
Jonathan T. Goldstein,
Andrew D. Cherniack,
Francisca Vazquez,
Aviad Tsherniak,
Erez Y. Levanon,
William C. Hahn and
Matthew Meyerson ()
Additional contact information
Hugh S. Gannon: Dana-Farber Cancer Institute
Tao Zou: Dana-Farber Cancer Institute
Michael K. Kiessling: University of Zurich and University Hospital Zürich
Galen F. Gao: Broad Institute of Harvard and MIT
Diana Cai: Dana-Farber Cancer Institute
Peter S. Choi: Dana-Farber Cancer Institute
Alexandru P. Ivan: Dana-Farber Cancer Institute
Ilana Buchumenski: Bar-Ilan University
Ashton C. Berger: Broad Institute of Harvard and MIT
Jonathan T. Goldstein: Broad Institute of Harvard and MIT
Andrew D. Cherniack: Dana-Farber Cancer Institute
Francisca Vazquez: Broad Institute of Harvard and MIT
Aviad Tsherniak: Broad Institute of Harvard and MIT
Erez Y. Levanon: Bar-Ilan University
William C. Hahn: Dana-Farber Cancer Institute
Matthew Meyerson: Dana-Farber Cancer Institute
Nature Communications, 2018, vol. 9, issue 1, 1-10
Abstract:
Abstract Systematic exploration of cancer cell vulnerabilities can inform the development of novel cancer therapeutics. Here, through analysis of genome-scale loss-of-function datasets, we identify adenosine deaminase acting on RNA (ADAR or ADAR1) as an essential gene for the survival of a subset of cancer cell lines. ADAR1-dependent cell lines display increased expression of interferon-stimulated genes. Activation of type I interferon signaling in the context of ADAR1 deficiency can induce cell lethality in non-ADAR1-dependent cell lines. ADAR deletion causes activation of the double-stranded RNA sensor, protein kinase R (PKR). Disruption of PKR signaling, through inactivation of PKR or overexpression of either a wildtype or catalytically inactive mutant version of the p150 isoform of ADAR1, partially rescues cell lethality after ADAR1 loss, suggesting that both catalytic and non-enzymatic functions of ADAR1 may contribute to preventing PKR-mediated cell lethality. Together, these data nominate ADAR1 as a potential therapeutic target in a subset of cancers.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-018-07824-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07824-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-018-07824-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().