EconPapers    
Economics at your fingertips  
 

CRISPR/Cas9-mediated glycolate oxidase disruption is an efficacious and safe treatment for primary hyperoxaluria type I

Nerea Zabaleta, Miren Barberia, Cristina Martin-Higueras, Natalia Zapata-Linares, Isabel Betancor, Saray Rodriguez, Rebeca Martinez-Turrillas, Laura Torella, Africa Vales, Cristina Olagüe, Amaia Vilas-Zornoza, Laura Castro-Labrador, David Lara-Astiaso, Felipe Prosper, Eduardo Salido (), Gloria Gonzalez-Aseguinolaza () and Juan R. Rodriguez-Madoz ()
Additional contact information
Nerea Zabaleta: University of Navarra, IdiSNA
Miren Barberia: University of Navarra, IdiSNA
Cristina Martin-Higueras: Universidad La Laguna, CIBERER
Natalia Zapata-Linares: University of Navarra, IdiSNA
Isabel Betancor: Universidad La Laguna, CIBERER
Saray Rodriguez: University of Navarra, IdiSNA
Rebeca Martinez-Turrillas: University of Navarra, IdiSNA
Laura Torella: University of Navarra, IdiSNA
Africa Vales: University of Navarra, IdiSNA
Cristina Olagüe: University of Navarra, IdiSNA
Amaia Vilas-Zornoza: University of Navarra, IdiSNA
Laura Castro-Labrador: University of Navarra, IdiSNA
David Lara-Astiaso: University of Navarra, IdiSNA
Felipe Prosper: University of Navarra, IdiSNA
Eduardo Salido: Universidad La Laguna, CIBERER
Gloria Gonzalez-Aseguinolaza: University of Navarra, IdiSNA
Juan R. Rodriguez-Madoz: University of Navarra, IdiSNA

Nature Communications, 2018, vol. 9, issue 1, 1-9

Abstract: Abstract CRISPR/Cas9 technology offers novel approaches for the development of new therapies for many unmet clinical needs, including a significant number of inherited monogenic diseases. However, in vivo correction of disease-causing genes is still inefficient, especially for those diseases without selective advantage for corrected cells. We reasoned that substrate reduction therapies (SRT) targeting non-essential enzymes could provide an attractive alternative. Here we evaluate the therapeutic efficacy of an in vivo CRISPR/Cas9-mediated SRT to treat primary hyperoxaluria type I (PH1), a rare inborn dysfunction in glyoxylate metabolism that results in excessive hepatic oxalate production causing end-stage renal disease. A single systemic administration of an AAV8-CRISPR/Cas9 vector targeting glycolate oxidase, prevents oxalate overproduction and kidney damage, with no signs of toxicity in Agxt1−/− mice. Our results reveal that CRISPR/Cas9-mediated SRT represents a promising therapeutic option for PH1 that can be potentially applied to other metabolic diseases caused by the accumulation of toxic metabolites.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-018-07827-1 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07827-1

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-07827-1

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07827-1