EconPapers    
Economics at your fingertips  
 

Fire air pollution reduces global terrestrial productivity

Xu Yue () and Nadine Unger ()
Additional contact information
Xu Yue: Chinese Academy of Sciences
Nadine Unger: University of Exeter

Nature Communications, 2018, vol. 9, issue 1, 1-9

Abstract: Abstract Fire emissions generate air pollutants ozone (O3) and aerosols that influence the land carbon cycle. Surface O3 damages vegetation photosynthesis through stomatal uptake, while aerosols influence photosynthesis by increasing diffuse radiation. Here we combine several state-of-the-art models and multiple measurement datasets to assess the net impacts of fire-induced O3 damage and the aerosol diffuse fertilization effect on gross primary productivity (GPP) for the 2002–2011 period. With all emissions except fires, O3 decreases global GPP by 4.0 ± 1.9 Pg C yr−1 while aerosols increase GPP by 1.0 ± 0.2 Pg C yr−1 with contrasting spatial impacts. Inclusion of fire pollution causes a further GPP reduction of 0.86 ± 0.74 Pg C yr−1 during 2002–2011, resulting from a reduction of 0.91 ± 0.44 Pg C yr−1 by O3 and an increase of 0.05 ± 0.30 Pg C yr−1 by aerosols. The net negative impact of fire pollution poses an increasing threat to ecosystem productivity in a warming future world.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.nature.com/articles/s41467-018-07921-4 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07921-4

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-07921-4

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07921-4