Critically assessing sodium-ion technology roadmaps and scenarios for techno-economic competitiveness against lithium-ion batteries
Adrian Yao (),
Sally M. Benson and
William C. Chueh ()
Additional contact information
Adrian Yao: Stanford University
Sally M. Benson: Stanford University
William C. Chueh: Stanford University
Nature Energy, 2025, vol. 10, issue 3, 404-416
Abstract:
Abstract Sodium-ion batteries have garnered notable attention as a potentially low-cost alternative to lithium-ion batteries, which have experienced supply shortages and price volatility for key minerals. Here we assess their techno-economic competitiveness against incumbent lithium-ion batteries using a modelling framework incorporating componential learning curves constrained by minerals prices and engineering design floors. We compare projected sodium-ion and lithium-ion price trends across over 6,000 scenarios while varying Na-ion technology development roadmaps, supply chain scenarios, market penetration and learning rates. Assuming that substantial progress can be made along technology roadmaps via targeted research and development, we identify several sodium-ion pathways that might reach cost-competitiveness with low-cost lithium-ion variants in the 2030s. In addition, we show that timelines are highly sensitive to movements in critical minerals supply chains—namely that of lithium, graphite and nickel. Our modelled outcomes suggest that being price advantageous against low-cost lithium-ion variants in the near term is challenging and increasing sodium-ion energy densities to decrease materials intensity is among the most impactful ways to improve competitiveness.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41560-024-01701-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natene:v:10:y:2025:i:3:d:10.1038_s41560-024-01701-9
Ordering information: This journal article can be ordered from
https://www.nature.com/nenergy/
DOI: 10.1038/s41560-024-01701-9
Access Statistics for this article
Nature Energy is currently edited by Fouad Khan
More articles in Nature Energy from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().