Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4
Arnaud J. Perez,
Quentin Jacquet,
Dmitry Batuk,
Antonella Iadecola,
Matthieu Saubanère,
Gwenaëlle Rousse,
Dominique Larcher,
Hervé Vezin,
Marie-Liesse Doublet and
Jean-Marie Tarascon ()
Additional contact information
Arnaud J. Perez: Collège de France, Chimie du Solide et Energie, UMR 8260, 11 place Marcelin Berthelot
Quentin Jacquet: Collège de France, Chimie du Solide et Energie, UMR 8260, 11 place Marcelin Berthelot
Dmitry Batuk: Collège de France, Chimie du Solide et Energie, UMR 8260, 11 place Marcelin Berthelot
Antonella Iadecola: Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459
Matthieu Saubanère: Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459
Gwenaëlle Rousse: Collège de France, Chimie du Solide et Energie, UMR 8260, 11 place Marcelin Berthelot
Dominique Larcher: Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459
Hervé Vezin: Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459
Marie-Liesse Doublet: Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459
Jean-Marie Tarascon: Collège de France, Chimie du Solide et Energie, UMR 8260, 11 place Marcelin Berthelot
Nature Energy, 2017, vol. 2, issue 12, 954-962
Abstract:
Abstract The Li-rich rocksalt oxides Li2MO3 (M = 3d/4d/5d transition metal) are promising positive-electrode materials for Li-ion batteries, displaying capacities exceeding 300 mAh g–1 thanks to the participation of the oxygen non-bonding O(2p) orbitals in the redox process. Understanding the oxygen redox limitations and the role of the O/M ratio is therefore crucial for the rational design of materials with improved electrochemical performances. Here we push oxygen redox to its limits with the discovery of a Li3IrO4 compound (O/M = 4) that can reversibly take up and release 3.5 electrons per Ir and possesses the highest capacity ever reported for any positive insertion electrode. By quantitatively monitoring the oxidation process, we demonstrate the material’s instability against O2 release on removal of all Li. Our results show that the O/M parameter delineates the boundary between the material’s maximum capacity and its stability, hence providing valuable insights for further development of high-capacity materials.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41560-017-0042-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natene:v:2:y:2017:i:12:d:10.1038_s41560-017-0042-7
Ordering information: This journal article can be ordered from
https://www.nature.com/nenergy/
DOI: 10.1038/s41560-017-0042-7
Access Statistics for this article
Nature Energy is currently edited by Fouad Khan
More articles in Nature Energy from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().