A robust large-pore zirconium carboxylate metal–organic framework for energy-efficient water-sorption-driven refrigeration
Sujing Wang,
Ji Sun Lee,
Mohammad Wahiduzzaman,
Jaedeuk Park,
Mégane Muschi,
Charlotte Martineau-Corcos,
Antoine Tissot,
Kyung Ho Cho,
Jérôme Marrot,
William Shepard,
Guillaume Maurin (),
Jong-San Chang () and
Christian Serre ()
Additional contact information
Sujing Wang: Institut des Matériaux Poreux de Paris, FRE 2000 CNRS, Ecole Normale Supérieure, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, PSL Université
Ji Sun Lee: Korea Research Institute of Chemical Technology (KRICT)
Mohammad Wahiduzzaman: Institut Charles Gerhardt, Montpellier UMR 5253 CNRS ENSCM UM, Université Montpellier
Jaedeuk Park: Korea Research Institute of Chemical Technology (KRICT)
Mégane Muschi: Institut des Matériaux Poreux de Paris, FRE 2000 CNRS, Ecole Normale Supérieure, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, PSL Université
Charlotte Martineau-Corcos: Institut Lavoisier de Versailles, UMR 8180 CNRS, Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay
Antoine Tissot: Institut des Matériaux Poreux de Paris, FRE 2000 CNRS, Ecole Normale Supérieure, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, PSL Université
Kyung Ho Cho: Korea Research Institute of Chemical Technology (KRICT)
Jérôme Marrot: Institut Lavoisier de Versailles, UMR 8180 CNRS, Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay
William Shepard: Synchrotron SOLEIL-UR1
Guillaume Maurin: Institut Charles Gerhardt, Montpellier UMR 5253 CNRS ENSCM UM, Université Montpellier
Jong-San Chang: Korea Research Institute of Chemical Technology (KRICT)
Christian Serre: Institut des Matériaux Poreux de Paris, FRE 2000 CNRS, Ecole Normale Supérieure, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, PSL Université
Nature Energy, 2018, vol. 3, issue 11, 985-993
Abstract:
Abstract The discovery of more-efficient and stable water adsorbents for adsorption-driven chillers for cooling applications remains a challenge due to the low working capacity of water sorption, high regeneration temperature, low energy efficiency under given operating conditions and the toxicity risk of harmful working fluids for the state-of-the-art sorbents. Here we report the water-sorption properties of a porous zirconium carboxylate metal–organic framework, MIP-200, which features S-shaped sorption isotherms, a high water uptake of 0.39 g g−1 below P/P0 = 0.25, facile regeneration and stable cycling, and most importantly a notably high coefficient of performance of 0.78 for refrigeration at a low driving temperature (below 70 °C). A joint computational–experimental approach supports that MIP-200 may be a practical alternative to the current commercially available adsorbents for refrigeration when its water adsorption performance is combined with advantages such as the exceptional chemical and mechanical stability and the scalable synthesis that involves simple, cheap and green chemicals.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.nature.com/articles/s41560-018-0261-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natene:v:3:y:2018:i:11:d:10.1038_s41560-018-0261-6
Ordering information: This journal article can be ordered from
https://www.nature.com/nenergy/
DOI: 10.1038/s41560-018-0261-6
Access Statistics for this article
Nature Energy is currently edited by Fouad Khan
More articles in Nature Energy from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().