Modelling the impact of flow-driven turbine power plants on great wind-driven ocean currents and the assessment of their energy potential
Bernard Barnier (),
Anastasiia Domina,
Sergey Gulev,
Jean-Marc Molines,
Thierry Maitre,
Thierry Penduff,
Julien Le Sommer,
Pierre Brasseur,
Laurent Brodeau and
Pedro Colombo
Additional contact information
Bernard Barnier: Centre National de la Recherche Scientifique, Université Grenoble Alpes, CNRS/UGA/IRD/G-INP
Anastasiia Domina: Centre National de la Recherche Scientifique, Université Grenoble Alpes, CNRS/UGA/IRD/G-INP
Sergey Gulev: Russian Academy of Sciences
Jean-Marc Molines: Centre National de la Recherche Scientifique, Université Grenoble Alpes, CNRS/UGA/IRD/G-INP
Thierry Maitre: Laboratoire des Ecoulements Geophysiques et Industriels
Thierry Penduff: Centre National de la Recherche Scientifique, Université Grenoble Alpes, CNRS/UGA/IRD/G-INP
Julien Le Sommer: Centre National de la Recherche Scientifique, Université Grenoble Alpes, CNRS/UGA/IRD/G-INP
Pierre Brasseur: Centre National de la Recherche Scientifique, Université Grenoble Alpes, CNRS/UGA/IRD/G-INP
Laurent Brodeau: Ocean Next
Pedro Colombo: Centre National de la Recherche Scientifique, Université Grenoble Alpes, CNRS/UGA/IRD/G-INP
Nature Energy, 2020, vol. 5, issue 3, 240-249
Abstract:
Abstract The persistence in the strength and direction of western boundary great ocean currents suggests that flow-driven turbines implemented in these currents have great potential for energy exploitation. However, technological developments in the design and installation of power-generating plants in the ocean are tied to our capacity to accurately identify the most favourable sites and provide practical assessments of the potentially recoverable energy. Here we use a global eddy-resolving ocean model to demonstrate that large ocean power plants may exert feedback on oceanic circulation that results in highly unpredictable changes in ocean currents. Regionally, these changes can drastically modify the path of the current. In extreme cases this corresponds to a decrease in the available power by more than 80% from initial expectations.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.nature.com/articles/s41560-020-0580-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natene:v:5:y:2020:i:3:d:10.1038_s41560-020-0580-2
Ordering information: This journal article can be ordered from
https://www.nature.com/nenergy/
DOI: 10.1038/s41560-020-0580-2
Access Statistics for this article
Nature Energy is currently edited by Fouad Khan
More articles in Nature Energy from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().