Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes
Zhejun Li and
Yi-Chun Lu ()
Additional contact information
Zhejun Li: The Chinese University of Hong Kong
Yi-Chun Lu: The Chinese University of Hong Kong
Nature Energy, 2021, vol. 6, issue 5, 517-528
Abstract:
Abstract Polysulfide is one of the most promising aqueous redox chemistries for grid storage owing to its inherent safety, high energy and low cost. However, its poor cycle life resulting from polysulfide cross-over has prohibited its successful commercialization. To exploit low-cost and high-capacity polysulfide flow batteries with industrial-relevant cycling stability, we develop a charge-reinforced ion-selective membrane to retain polysulfide/iodide, restrain membrane swelling and prevent water/OH− migration. The polysulfide/polyiodide static cell demonstrates a low capacity decay rate (0.005% per day and 0.0004% per cycle) over 2.9 months (1,200 cycles) at a 100% state of charge. A flow cell containing 4.0 M KI/2.0 M K2S2 demonstrated stable cycling at 17.9 Ah l−1posolyte+negolyte over 3.1 months (500 cycles). Small-angle X-ray scattering and in-situ attenuated total reflectance–Fourier transform infrared/solid-state NMR revealed reduced water cluster size and restrained water movement in the charge-reinforced ion-selective membrane compared to commercial Nafion membrane. Techno-economic analysis shows that the developed polysulfide flow battery promises competitive levelized cost of storage for long-duration energy storage.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41560-021-00804-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natene:v:6:y:2021:i:5:d:10.1038_s41560-021-00804-x
Ordering information: This journal article can be ordered from
https://www.nature.com/nenergy/
DOI: 10.1038/s41560-021-00804-x
Access Statistics for this article
Nature Energy is currently edited by Fouad Khan
More articles in Nature Energy from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().