A silicon carbide-based highly transparent passivating contact for crystalline silicon solar cells approaching efficiencies of 24%
Malte Köhler (),
Manuel Pomaska (),
Paul Procel,
Rudi Santbergen,
Alexandr Zamchiy,
Bart Macco,
Andreas Lambertz,
Weiyuan Duan,
Pengfei Cao,
Benjamin Klingebiel,
Shenghao Li,
Alexander Eberst,
Martina Luysberg,
Kaifu Qiu (),
Olindo Isabella,
Friedhelm Finger,
Thomas Kirchartz,
Uwe Rau and
Kaining Ding ()
Additional contact information
Malte Köhler: Forschungszentrum Jülich
Manuel Pomaska: Forschungszentrum Jülich
Paul Procel: Delft University of Technology
Rudi Santbergen: Delft University of Technology
Alexandr Zamchiy: Novosibirsk State University
Bart Macco: Eindhoven University of Technology
Andreas Lambertz: Forschungszentrum Jülich
Weiyuan Duan: Forschungszentrum Jülich
Pengfei Cao: Forschungszentrum Jülich
Benjamin Klingebiel: Forschungszentrum Jülich
Shenghao Li: Forschungszentrum Jülich
Alexander Eberst: Forschungszentrum Jülich
Martina Luysberg: Forschungszentrum Jülich
Kaifu Qiu: Forschungszentrum Jülich
Olindo Isabella: Delft University of Technology
Friedhelm Finger: Forschungszentrum Jülich
Thomas Kirchartz: Forschungszentrum Jülich
Uwe Rau: Forschungszentrum Jülich
Kaining Ding: Forschungszentrum Jülich
Nature Energy, 2021, vol. 6, issue 5, 529-537
Abstract:
Abstract A highly transparent passivating contact (TPC) as front contact for crystalline silicon (c-Si) solar cells could in principle combine high conductivity, excellent surface passivation and high optical transparency. However, the simultaneous optimization of these features remains challenging. Here, we present a TPC consisting of a silicon-oxide tunnel layer followed by two layers of hydrogenated nanocrystalline silicon carbide (nc-SiC:H(n)) deposited at different temperatures and a sputtered indium tin oxide (ITO) layer (c-Si(n)/SiO2/nc-SiC:H(n)/ITO). While the wide band gap of nc-SiC:H(n) ensures high optical transparency, the double layer design enables good passivation and high conductivity translating into an improved short-circuit current density (40.87 mA cm−2), fill factor (80.9%) and efficiency of 23.99 ± 0.29% (certified). Additionally, this contact avoids the need for additional hydrogenation or high-temperature postdeposition annealing steps. We investigate the passivation mechanism and working principle of the TPC and provide a loss analysis based on numerical simulations outlining pathways towards conversion efficiencies of 26%.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41560-021-00806-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natene:v:6:y:2021:i:5:d:10.1038_s41560-021-00806-9
Ordering information: This journal article can be ordered from
https://www.nature.com/nenergy/
DOI: 10.1038/s41560-021-00806-9
Access Statistics for this article
Nature Energy is currently edited by Fouad Khan
More articles in Nature Energy from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().