The role of modal substitution in rebound effects within US freight transportation
James B. Bushnell and
Jonathan E. Hughes ()
Additional contact information
James B. Bushnell: University of California at Davis
Jonathan E. Hughes: University of Colorado at Boulder
Nature Energy, 2024, vol. 9, issue 9, 1153-1160
Abstract:
Abstract Energy efficiency improvements can create rebound effects that increase energy use. We have studied rebound in US freight transportation and found that substitution across transportation modes can be an important rebound mechanism. The sign of the rebound effect depends on whether the improved efficiency induces substitution with more or less fuel-efficient modes. We used detailed US microdata to model shippers’ freight mode choices and simulate how these choices change under energy efficiency standards. Under a policy approximating US heavy-duty truck fuel economy standards, we found that rebound can be positive or negative in individual market segments. However, the overall effect substantially reduces the gains from improved truck fuel efficiency. Energy savings are reduced by around 20% because shipments switch from rail service to the improved, but still less fuel-efficient, truck service. Similar substitution rebound effects could occur in other settings where producers choose between technologies with different energy efficiencies.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41560-024-01568-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natene:v:9:y:2024:i:9:d:10.1038_s41560-024-01568-w
Ordering information: This journal article can be ordered from
https://www.nature.com/nenergy/
DOI: 10.1038/s41560-024-01568-w
Access Statistics for this article
Nature Energy is currently edited by Fouad Khan
More articles in Nature Energy from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().