Quantification of energy and carbon costs for mining cryptocurrencies
Max J. Krause () and
Thabet Tolaymat
Additional contact information
Max J. Krause: Oak Ridge Institute for Science and Education
Nature Sustainability, 2018, vol. 1, issue 11, 711-718
Abstract:
Abstract There are now hundreds of cryptocurrencies in existence and the technological backbone of many of these currencies is blockchain—a digital ledger of transactions. The competitive process of adding blocks to the chain is computation-intensive and requires large energy input. Here we demonstrate a methodology for calculating the minimum power requirements of several cryptocurrency networks and the energy consumed to produce one US dollar’s (US$) worth of digital assets. From 1 January 2016 to 30 June 2018, we estimate that mining Bitcoin, Ethereum, Litecoin and Monero consumed an average of 17, 7, 7 and 14 MJ to generate one US$, respectively. Comparatively, conventional mining of aluminium, copper, gold, platinum and rare earth oxides consumed 122, 4, 5, 7 and 9 MJ to generate one US$, respectively, indicating that (with the exception of aluminium) cryptomining consumed more energy than mineral mining to produce an equivalent market value. While the market prices of the coins are quite volatile, the network hashrates for three of the four cryptocurrencies have trended consistently upward, suggesting that energy requirements will continue to increase. During this period, we estimate mining for all 4 cryptocurrencies was responsible for 3–15 million tonnes of CO2 emissions.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (80)
Downloads: (external link)
https://www.nature.com/articles/s41893-018-0152-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natsus:v:1:y:2018:i:11:d:10.1038_s41893-018-0152-7
Ordering information: This journal article can be ordered from
https://www.nature.com/natsustain/
DOI: 10.1038/s41893-018-0152-7
Access Statistics for this article
Nature Sustainability is currently edited by Monica Contestabile
More articles in Nature Sustainability from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().