Calculations of effectiveness factors and the criteria of mass transfer effect for high-temperature methanation (HTM) catalyst
Li-Jun Zhao and
Qi Sun
International Journal of Low-Carbon Technologies, 2015, vol. 10, issue 3, 288-293
Abstract:
Natural gas is an extremely important bridge fuel to a low-carbon energy economy for improving local air quality. Coal to synthetic natural gas (SNG) is an effective way to convert the high-carbon energy (coal) into the low-carbon energy with rich hydrogen (natural gas). For the modern coal to SNG industry, the high-temperature methanation (HTM) catalyst plays an important role, and the advanced evaluation process should necessitate the elimination of mass transfer effect. Some simple but effective model catalysts, such as slab and sphere, can be very helpful in defining the reaction conditions, and thus facilitating the evaluation process for real HTM catalysts. In this work, slab and sphere model catalysts were adopted to derive mass transfer and reaction-coupled equations, the numerical methods were used to solve the coupled equations for the concentration profiles in catalysts, and the effectiveness factors were accordingly calculated. By taking advantage of the Thiele module φ and the Weisz–Prater module Φ, the criteria for the elimination of mass transfer effect in the HTM catalyst evaluation process were successfully defined. This work also complements the Weisz–Prater criterion by incorporating ‘negative reaction orders’.
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/ijlct/ctu005 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:ijlctc:v:10:y:2015:i:3:p:288-293.
Access Statistics for this article
International Journal of Low-Carbon Technologies is currently edited by Saffa B. Riffat
More articles in International Journal of Low-Carbon Technologies from Oxford University Press
Bibliographic data for series maintained by Oxford University Press ().