EconPapers    
Economics at your fingertips  
 

Design configurations analysis of wind-induced natural ventilation tower in hot humid climate using computational fluid dynamics

Chin Haw Lim, Omidreza Saadatian, Kamaruzzaman Sopian, M. Yusof Sulaiman, Sohif Mat, Elias Salleh and K.C. Ng

International Journal of Low-Carbon Technologies, 2015, vol. 10, issue 4, 332-346

Abstract: Wind-induced natural ventilation tower is one of the effective devices in enhancing indoor air quality. It can be designed and integrated as part of building components. This paper investigates the performance of various design configurations of a wind-induced natural ventilation tower with the focus on Venturi-shaped roofs and towers. The Venturi-shaped roofs and towers are used to create negative pressure in order to enhance the extraction air flow rates of the wind-induced natural ventilation tower. The computational fluid dynamics (CFD) method is used to analyse each of the design configurations. The different design configurations are based on roof tilt angles, roofs' shapes, tower heights and shapes of the wind-induced natural ventilation tower. The parameters analysed are extraction air flow rates and air flow pattern. Based on the CFD simulation results of various design configurations, the ‘biconcave’-shaped wind tower has the best design configuration with 14 568.66 m3/h extraction air flow rates at 0.8 m/s external wind velocity.

Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/ijlct/ctt039 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:ijlctc:v:10:y:2015:i:4:p:332-346.

Access Statistics for this article

International Journal of Low-Carbon Technologies is currently edited by Saffa B. Riffat

More articles in International Journal of Low-Carbon Technologies from Oxford University Press
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:ijlctc:v:10:y:2015:i:4:p:332-346.