Feasibility and optimization of aerogel glazing system for building energy efficiency in different climates
Huan Wang,
Huijun Wu,
Yunfei Ding,
Jingchen Feng and
Shengwei Wang
International Journal of Low-Carbon Technologies, 2015, vol. 10, issue 4, 412-419
Abstract:
Aerogel glazing system has become a promising energy-efficient window glass owing to its extremely low thermal conductivity and high visual transmittance. Two newly developed aerogel glazing systems (viz. #4 and #5) and three common glazing systems (viz. clear glass #1 and insulating glass #2 and #3) are investigated on the component heating and cooling load of a model building to evaluate their feasibility in various climates in China by using eQuest code. The building energy efficiency of 20, 11 and 9% could be obtained in Harbin, Beijing and Shanghai, respectively, as clear glass #1 were replaced with aerogel glazing system #5. The results demonstrated that the aerogel glazing system was extremely feasible in Severe Cold Region and significantly feasible in Cold and Hot-summer Cold-winter Regions. Effects of heat transfer coefficient (U) and shading coefficient (SC) of the glazing system on building energy loads were evaluated to further optimize glazing systems. The results demonstrated that the total heating load in colder climate reduced by 73% as the U of glass was decreased from 5.5 to 0.5 W/(m2 K). The total cooling load in warmer climate reduced by 16% as the SC was increased from 0.916 to 0.423. The findings could be of great potential in the selection and optimization of the glazing system in different climate zones aiming at building energy efficiency.
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1093/ijlct/ctu010 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:ijlctc:v:10:y:2015:i:4:p:412-419.
Access Statistics for this article
International Journal of Low-Carbon Technologies is currently edited by Saffa B. Riffat
More articles in International Journal of Low-Carbon Technologies from Oxford University Press
Bibliographic data for series maintained by Oxford University Press ().