Reverse flow in natural convection heat pipe solar water heater
Kok Seng Ong,
Kevin Osmond and
Wei Li Tong
International Journal of Low-Carbon Technologies, 2015, vol. 10, issue 4, 430-437
Abstract:
System performance of a natural convection (thermosyphon) solar water heater depends on design and setup of collector and storage tank as well as environmental factors such as solar intensity, ambient temperature and wind conditions. The relative height separating the tank and collector mainly influences the magnitude of the thermosyphon flow rates, including both forward and reverse flow at night. In this experimental investigation, an array of evacuated tube heat pipe solar collectors was connected to an insulated hot water storage tank. The effect of the separation height between tank and collectors was investigated and reported. Thermosyphon water flow rates were measured using a dye-injection procedure in both forward and reverse flow directions. The results showed that reverse flow always occurred in the evenings and was about 5–11 times less than forward flow. The overnight mean water temperature drop was independent of the height separating the collectors and storage tank and ranged between 2 and 10°C. The temperature drop was greater when the night was cooler.
Date: 2015
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/ijlct/ctu017 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:ijlctc:v:10:y:2015:i:4:p:430-437.
Access Statistics for this article
International Journal of Low-Carbon Technologies is currently edited by Saffa B. Riffat
More articles in International Journal of Low-Carbon Technologies from Oxford University Press
Bibliographic data for series maintained by Oxford University Press ().