EconPapers    
Economics at your fingertips  
 

A feasible energy-saving analysis of a new system for CO2 cryogenic capture

Shuhong Li, Jie Ding, Xiaosong Zhang, Deyuan Cheng, Xinyu Hu and Xianliang Li

International Journal of Low-Carbon Technologies, 2016, vol. 11, issue 2, 235-239

Abstract: A new CO2 cryogenic capture and liquefaction system has been proposed previously in order to separate CO2 from exhausted gases and make it as a resource for industry. This system combines CO2 cryogenic capture with N2/O2 separation together. Its energy consumption is lower than the traditional amine solution capture process as theoretical analysis. In this study, the simulation of the proposed system with several improvements was carried out aiming to reduce the energy consumption further. Many heat exchangers were introduced and the heat exchanger arrangements were optimized to recycle the refrigeration capacity from the returned N2 after the N2/O2 separation. The discharge pressure of mixture gas from the compressor was reduced from 10 to 3.493 MPa. The simulation results showed that the compression work could be greatly reduced and the energy consumption of CO2 capture in this new system after these improvements reached 2.884 GJ/ton CO2. The new system is promising because not only liquid or solid CO2 could be produced but also N2 and O2 could be separated.

Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1093/ijlct/ctt065 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:ijlctc:v:11:y:2016:i:2:p:235-239.

Access Statistics for this article

International Journal of Low-Carbon Technologies is currently edited by Saffa B. Riffat

More articles in International Journal of Low-Carbon Technologies from Oxford University Press
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:ijlctc:v:11:y:2016:i:2:p:235-239.