EconPapers    
Economics at your fingertips  
 

Development of a cooling load prediction model for air-conditioning system control of office buildings

Chengliang Fan, Yundan Liao and Yunfei Ding

International Journal of Low-Carbon Technologies, 2019, vol. 14, issue 1, 70-75

Abstract: Building cooling load prediction is of critical importance for achieving energy saving of air-conditioning system in office buildings. It not only benefits the energy-efficiency of the air-conditioning system, but is also important for the system stability. Many techniques have been developed for building cooling load prediction. These methods are normally arranged into three categories: regression analysis, energy simulation and artificial intelligence. Among them, the regression analysis methods are simple in mechanism and much practical for real application. However, traditional regression models are not sufficient to manage multi-parameter dynamic changes, and the outliers in prediction has not been well considered, making the accuracy of cooling load prediction not satisfactory. To promote the feasibility of regression methods for cooling load prediction of office buildings, an efficient regression model based on sensitivity analysis and the traditional autoregressive with exogenous (ARX) model (named as improved ARX model) is proposed in this paper. The improved ARX model keeps the constitution of ARX model, but uses specified variables that selected by sensitivity analysis. The quadratic terms of vital variables are included to reduce the impact of system non-linearity. A least square method is used to get the weight coefficient matrix for model training. Comparison studies are used to evaluate the prediction accuracy of the improved ARX model. The proposed model will largely improve prediction accuracy and more adaptive for real applications in the perspective of optimal control for HVAC systems.

Keywords: cooling load prediction; air-conditioning system; ARX model; regression analysis; sensitivity analysis (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1093/ijlct/cty057 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:ijlctc:v:14:y:2019:i:1:p:70-75.

Access Statistics for this article

International Journal of Low-Carbon Technologies is currently edited by Saffa B. Riffat

More articles in International Journal of Low-Carbon Technologies from Oxford University Press
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:ijlctc:v:14:y:2019:i:1:p:70-75.