Fault diagnosis of air-conditioning refrigeration system based on sparse autoencoder
Zhiyi Wang,
Jiachen Zhong,
Jingfan Li and
Cui Xia
International Journal of Low-Carbon Technologies, 2019, vol. 14, issue 4, 487-492
Abstract:
To overcome the drawbacks of using supervised learning to extract fault features for classification and low nonlinearity of the features in most of current fault diagnosis of air-conditioning refrigeration system, sparse autoencoder (SAE) is presented to extract fault features that are used as the input to the classifier and to achieve fault diagnosis for air-conditioning refrigeration system. The SAE structure is tuned by adjusting the number of hidden layers and nodes to build the optimal model, which is compared with the fault diagnosis model based on support vector machine. Results indicate that the indexes of the model combined with SAE, such as accuracy, precision and recall, are all improved, especially for the faults with high complexity. Besides, SAE shows high generalization ability with small-scale sample data and high efficiency with large-scale data. Obviously, the use of SAE can effectively optimize the diagnosis performance of the classifier.
Keywords: sparse autoencoder; feature extraction; air-conditioning refrigeration system; fault diagnosis (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/ijlct/ctz034 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:ijlctc:v:14:y:2019:i:4:p:487-492.
Access Statistics for this article
International Journal of Low-Carbon Technologies is currently edited by Saffa B. Riffat
More articles in International Journal of Low-Carbon Technologies from Oxford University Press
Bibliographic data for series maintained by Oxford University Press ().