Aerodynamic and structural optimization of wind turbine blade with static aeroelastic effects
Jie Zhu,
Xiaohui Ni and
Xiaomei Shen
International Journal of Low-Carbon Technologies, 2020, vol. 15, issue 1, 55-64
Abstract:
With the increasing size of wind turbine blade, the aeroelastic analysis becomes an essential step in the blade design process. The scope of this paper is to investigate the static aeroelastic effects between the fluid–structure interaction and improve the blade performances. First, the rigid and flexible blades are used to analyze the effects of static aeroelasticity on the blade aerodynamic and structural performances through a blade element momentum model coupled with 3D finite element analysis model. Based on this, a multi-objective aerodynamic and structural optimization method is proposed aiming at increasing the annual energy production and reducing blade mass, key parameters of the blade are employed as design variables, and various design requirements including strain, deflection, vibration and buckling limits are considered as constraints. Finally, a commercial 1.5 MW wind turbine blade is applied as a case study, and the optimization results show great improvements for the aerodynamic and structural performances of the blade.
Keywords: aerodynamic and structural optimization; wind turbine blade; static aeroelastic effects; annual energy production; blade mass (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1093/ijlct/ctz057 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:ijlctc:v:15:y:2020:i:1:p:55-64.
Access Statistics for this article
International Journal of Low-Carbon Technologies is currently edited by Saffa B. Riffat
More articles in International Journal of Low-Carbon Technologies from Oxford University Press
Bibliographic data for series maintained by Oxford University Press ().