Multi-stage heat-pipe heat exchanger for improving energy efficiency of the HVAC system in a hospital operating room1
Heat pipe heat exchanger for heat recovery in air conditioning
Ragil Sukarno,
Nandy Putra,
Imansyah Ibnu Hakim,
Fadhil Fuad Rachman and
Teuku Meurah Indra Mahlia
International Journal of Low-Carbon Technologies, 2021, vol. 16, issue 2, 259-267
Abstract:
The demands of specific requirements related to thermal comforts, such as temperature, relative humidity, inside air exchange and other factors required in a hospital operating rooms, have necessitated the development of energy-efficient heating, ventilation and air conditioning (HVAC) systems and efficient heat-recovery system using a heat-pipe heat exchanger (HPHE). The experiment was conducted by using HPHEs having three, six and nine rows, with four heat pipes in each row, arranged in a staggered configuration with a variation of fresh-air inlet temperature and velocity. The theoretical analysis was conducted using the ε-NTU method for predicting the effectiveness, outlet temperature of the evaporator side and energy recovery of the HPHE. The experimental results indicated that increasing the air-inlet temperature in the evaporator section and the number of rows increased the HPHE effectiveness but increasing the air-inlet velocity reduced the effectiveness. The highest effectiveness of 62.6% was obtained at an air-inlet temperature of 45°C with an air-inlet velocity of 2 m/s and a 9-row HPHE. The energy recovery of the HPHE increased with the number of rows, air-inlet temperature and air velocity in the evaporator section. The ε-NTU method can be used as a comparison method in the analysis of heat-recovery systems that apply HPHE air conditioning systems. Heat pipes that utilize cold-air exhaust from a room in an HVAC system can enhance efficiency and reduce emissions.
Keywords: heat-pipe heat exchanger; effectiveness; ε-NTU; energy recovery (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/ijlct/ctaa048 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:ijlctc:v:16:y:2021:i:2:p:259-267.
Access Statistics for this article
International Journal of Low-Carbon Technologies is currently edited by Saffa B. Riffat
More articles in International Journal of Low-Carbon Technologies from Oxford University Press
Bibliographic data for series maintained by Oxford University Press ().